
HESSD
5, 3169–3211, 2008

Temporal dynamics
of model

performance

D. E. Reusser et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Hydrol. Earth Syst. Sci. Discuss., 5, 3169–3211, 2008
www.hydrol-earth-syst-sci-discuss.net/5/3169/2008/
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.

Hydrology and
Earth System

Sciences
Discussions

Papers published in Hydrology and Earth System Sciences Discussions are under
open-access review for the journal Hydrology and Earth System Sciences

Analysing the temporal dynamics of
model performance for hydrological
models
D. E. Reusser1, T. Blume1, B. Schaefli2, and E. Zehe3

1University of Potsdam, Institute for Geoecology, Potsdam, Germany
2Delft University of Technology, Faculty of Civil Engineering and Geosciences, Water
Resources Section, Delft, The Netherlands
3TU München, Institute of Water and Environment, München, Germany

Received: 16 September 2008 – Accepted: 18 September 2008 – Published: 19 November
2008

Correspondence to: D. E. Reusser (dreusser@uni-potsdam.de)

Published by Copernicus Publications on behalf of the European Geosciences Union.

3169

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/5/3169/2008/hessd-5-3169-2008-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/5/3169/2008/hessd-5-3169-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
5, 3169–3211, 2008

Temporal dynamics
of model

performance

D. E. Reusser et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Abstract

The temporal dynamics of hydrological model performance gives insights into errors
that cannot be obtained from global performance measures assigning a single num-
ber to the fit of a simulated time series to an observed reference series. These er-
rors can include errors in data, model parameters, or model structure. Dealing with a5

set of performance measures evaluated at a high temporal resolution implies analyz-
ing and interpreting a high dimensional data set. This paper presents a method for
such a hydrological model performance assessment with a high temporal resolution
and illustrates its application for two very different rainfall-runoff modeling case stud-
ies. The first is the Wilde Weisseritz case study, a headwater catchment in the eastern10

Ore Mountains, simulated with the conceptual model WaSiM-ETH. The second is the
Malalcahuello case study, a headwater catchment in the Chilean Andes, simulated with
the physics-based model Catflow. The proposed time-resolved performance assess-
ment starts with the computation of a large set of classically used performance mea-
sures for a moving window. The key of the developed approach is a data-reduction15

method based on self-organizing maps (SOMs) and cluster analysis to classify the
high-dimensional performance matrix. Synthetic peak errors are used to interpret the
resulting error classes. The final outcome of the proposed method is a time series of
the occurrence of dominant error types. For the two case studies analyzed here, 6
such error types have been identified. They show clear temporal patterns which can20

lead to the identification of model structural errors.

1 Introduction

Hydrological modelling essentially includes – implicitly or explicitly – five steps: 1) De-
ciding on the dominating processes and on appropriate concepts for their description.
This first step is ideally based on data and process observations as it requires a thor-25

ough understanding of how the catchment functions. 2) Turning these concept into
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equations. For the more common concepts in hydrology, equations are readily avail-
able. 3) Coding and numerically solving these equations. Again, we think that it is of
great advantage to use existing work if it is available (Buytaert et al., 2008). 4) Once
the model structure is defined, usually a number of model parameters have to be es-
timated (Gupta et al., 2005). 5) Finally the model has to be tested usually based on5

an independent data set and we have to decide whether the model is acceptable or
not. In the latter case we have to revise the initially chosen concepts and repeat steps
2–5 (see Fenicia et al., 2008, for an example of how to step wise improve a model).
However, a revision of our model concept requires a clear understanding of the model’s
structural deficits: what is going wrong, which part of the model is the origin and when10

does it go wrong?
Model evaluation is usually carried out by determining certain performance mea-

sures, thus quantitatively comparing simulation output and measured data. Various
methods of model evaluation have been developed over time: Starting with visual in-
spection (usually used implicitly or explicitly during manual calibration) more objectivity15

was achieved with the calculation of performance measures, of which the most widely
used in hydrology is certainly the Nash-Sutcliffe-Efficiency (Nash and Sutcliffe, 1970).
Automatic calibration methods were developed based on these performance measures
and lead to the realisation, that a single measure is not able to catch all the features
that should be reproduced by the hydrological model (Gupta et al., 1998). As a result,20

multi objective calibration methods based on a range of performance measures have
been and are still being developed (Gupta et al., 1998; Yapo et al., 1998; Vrugt et al.,
2003).

Probably because of the development of automatic calibration procedures and their
focus on the entire calibration period, the study of the temporal dynamics of model25

performance – which is implicitly used during visual inspection – did not undergo the
same process of formalization.

However, we suggest that identification of temporal dynamics of performance mea-
sures can be very useful for detecting model structural errors as a first step of model im-
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provement. This is of particular importance for operational flood forecasting, because
detailed knowledge about the dominant processes is necessary for credible predic-
tions. Global performance measures are only of little use in this context, because lead
times for operational forecasts are typically very short 2 to 36 h. While to our knowledge
there are no studies on high resolution temporal dynamics of model performance, it has5

been shown before that it might be useful to split time series (for example in seasons) to
obtain some minimum temporal resolution of performance measures. Choi and Beven
(2007) showed with their model conditioning procedure, that performance measures
calculated on a seasonal scale give some additional indication of model structure de-
ficiencies when compared to global performance measures. Similarly, Shamir et al.10

(2005) were able to improve identifiability of model parameters when looking at model
performance on different time scales.

The rational behind this study is that we get a much clearer picture of structural
model deficiencies if we know

– during which periods the model is or is not reproducing observed quantities and15

dynamics;

– what the nature of the error in times of bad model performance is;

– which parts/components of the model are causing this error.

A methodology to answer the first two questions is suggested here, while the third
topic will be the subject of a subsequent publication (The idea is to combine this method20

with an approach to identify the model components that are active during times of bad
performance by analysing the temporal dynamics of the sensitivity of model parame-
ters). The main objective of this paper is thus to present a new method to analyse the
temporal dynamics of the performance of hydrological models and to be more specific
about the type of error. We propose to use a combination of a) vectors of performance25

measures to characterize different error types, b) synthetic peak errors to support error
type characterization and c) the time series of the obtained error types to analyse their
occurrence with respect to observed and modelled flow dynamics.
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We use multiple performance measures to capture different types of model structural
deficiencies, similar to multi objective calibration (e.g. Gupta et al., 1998; Yapo et al.,
1998; Boyle et al., 2000; Vrugt et al., 2003). Dawson et al. (2007) assembled a list of
about 20 performance measures commonly used in hydrology. In addition, we use sev-
eral performance measures introduced by Jachner et al. (2007) to test the agreement5

between time series in the field of ecology and which, as we will discuss, are promising
for the use in the field of hydrological model calibration

Synthetic peak errors with known characteristics will be used to better understand
the model performance measures. Interpreting the values of performance measures
based on reference time series has for example been proposed by Krause et al. (2005);10

Dawson et al. (2007) who used modified natural time series. We use an artificially
generated peak as it is easier to control its properties.

As mentioned before hydrological modelling studies do generally not analyse the
temporal dynamics of model performance. However, a similar approach to the one sug-
gested here, but referring to parameter uncertainties has been used for the dynamic15

identifiability analysis (Wagener et al., 2003) and the multi-period model conditioning
approach (Choi and Beven, 2007) where the temporal dynamics of parameter uncer-
tainty is analysed. The temporal dynamics of model structure uncertainties have been
analysed by Clark et al. (2008), who used more than 100 models from a model family
for this study (model structures need to be fairly simple in this case).20

While different aspects have been used before, their combination as well as the use
of high resolution performance measure time series is a new and promising approach
for model evaluation.

The large amount of data produced in such an analysis quickly becomes overwhelm-
ing and even confusing. Therefore an appropriate data reduction technique is essential25

to reduce the dimension of the data, while at the same time loosing as little informa-
tion as possible. The number of simulated time steps (N) is usually large and multiple
performance measures (M) are used at each time step, therefore a set of N∗M values
has to be interpreted. Classical methods exist to reduce M, e.g. principle component

3173

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/5/3169/2008/hessd-5-3169-2008-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/5/3169/2008/hessd-5-3169-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
5, 3169–3211, 2008

Temporal dynamics
of model

performance

D. E. Reusser et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

analysis, use of scatter plots (Cloke and Pappenberger, 2008), or removal of highly
correlated measures (e.g. Gupta et al., 1998). In this study the third method was cho-
sen as it is easy to apply and (contrary to principal component analysis) the variables
are interpretable.

In a second step of data reduction, we propose self-organizing maps (SOM) (e.g.5

Kohonen, 1995; Haykin, 1999), which have already been used in several hydrological
studies (see Herbst and Casper, 2008, for a short overview). The use of SOMs allows
you to reduce the dimension of a data set while preserving the topology of the data in
a two dimensional space (i.e. similar data sets are close to each other). During this
step some of the variability is lost as the number of sets is drastically reduced (to be10

further explained in Sect. 2.3). From the SOM we will identify typical combinations of
model performance measures, i.e. error types/error classes. This then leads to the
assessment of the temporal dynamics of these typical combinations.

In this manuscript, we first present a detailed description of the methodology (Sect. 2)
and then show its application for two case studies. These two case studies differ a) in15

catchment characteristics (size, topography, land use, soils etc.; Sect. 3) and b) in
the hydrological model selected for simulation (process-oriented vs. physically based;
Sect. 4). The results for the case studies are presented in Sects. 5 and 6. Main findings
and suggested future tasks are summarized in Sect. 7.

2 Methods20

The proposed methodology can be summarized as follows:

1. determination of a large set of different performance measures,

2. evaluation of the set of performance measures for a moving time window; this
yields a vector of performance measures for each time step;

3. removal of highly correlated performance measures, i.e. of performance mea-25

sures that have time series showing a high correlation with other time series;
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4. use of synthetic peak errors to interpret the values of the remaining performance
measures, i.e. to assess their error response;

5. use of SOMs and cluster analysis for further data reduction and classification of
error types;

6. analysis and characterization of error types using box plots and synthetic peak5

errors;

7. analysis of temporal dynamics of error types with respect to measured and mod-
elled time series.

A detailed description of these steps is given below.

2.1 Performance measures10

Dawson et al. (2007) assembled around 20 performance measures used in hydrol-
ogy into a test suite, including the Nash-Sutcliffe coefficient of efficiency CE, sev-
eral measures based on the absolute or squared error e.g. the mean absolute er-
ror MAE, the root mean squared error RMSE and many more. The measures are
listed in Table 1. Detailed descriptions are available from (Dawson et al., 2007) or15

https://co-public.lboro.ac.uk/cocwd/HydroTest/Details.html. Because CE in the positive
range is of more interest, we used the following transformation of the standard Nash-
Sutcliffe coefficient of efficiency CE∗ in order to avoid large negative values, which can
occur during periods with little dynamics in the time series:

CE =
{

CE∗ if CE∗> − 1
−ln(−CE∗) − 1 if CE∗≤ − 1

(1)20

Most of these measures are designed to capture the degree of exact agreement
between modelled and observed values. However, we are also interested to mea-
sure the degree of qualitative agreement. Jachner et al. (2007) proposed a num-
ber of performance measures determining such a qualitative agreement (see also
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http://cran.stat.ucla.edu/web/packages/qualV/qualV.pdf). Their measures are mainly
based on MAE, MSE and RMSE defined as follows:

MAE =
1
n

∑
|xobs−xsim| (2)

MSE =
1
n

∑
(xobs−xsim)2 (3)

RMSE =

√
1
n

∑
(xobs−xsim)2 (4)5

Where xobs is the observed time series and xsim the corresponding simulated time
series. Depending on the desired qualitative comparison, they used data transfor-
mation to allow for shifts and/or changes in scaling. To obtain measures which are
insensitive to shifts, data are centred (denoted by a “C”). In order to ignore scaling,
data are standardized with a linear transformation, minimizing the deviance measure10

(“S”).
In addition, Jachner et al. (2007) provide performance measures for different scales

of interest. The absolute scale is most often used and applies to the measures defined
above. If the difference calculated as a ratio is of more interest (e.g. simulating twice
the observed discharge, regardless of the absolute value), a relative scale (“P ” from15

percentage), log transformed data (“L”) or geometric transformed data (“G”) are more
appropriate (see Jachner et al., 2007, for more details). Finally they define performance
measures using an ordinal scale (“O” – after transformation of the data to ranks). They
also define the longest common sequence (LCS) measure: The discharge time series
is reduced to a sequence of letters indicating increases (“I”), constant values (“C”),20

or decreases (“D”). This sequence for the observed discharge (e.g. IIIIIICCDDDDDD-
CCCIII) is then compared to the sequence of the simulated discharge. LCS then is
defined as the longest accumulation of characters with the same order in both se-
quences. Thereby the method allows deletions in one of the two series, i.e. characters
can be ignored or missed (Jachner et al., 2007, for more details).25
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For this study, we complemented the above performance measures with the following
set of five measures to obtain additional information: 1) The lag time tL defined as the
lag of the maximum in cross correlation, 2) the slope error rd and 3) the recession error
rk defined as:

rd=
∂xobs

∂xsim
(5)5

rk=
k(xobs)

k(xsim)
withk(x)= − ∂x

x
(6)

The two measures were calculated at the end point of the time window used to cal-
culate the other measures (see below). 4) The direction error DE, which is obtained
by counting the number of times the sign of the slope differs for the observed and the
modelled time series. Measures 2–4) only work for “smoothed” time series where noise10

from the measurement on short time scales has been removed. 5) The error quantile
was also calculated at the end point of the time window:

Qe=quantile(xsim−xobs) (7)

One way to use these measures would be to translate the modelling goal into some
criteria (e.g. “reproduce timing and amplitude of extreme events well”) and to select the15

most suitable performance measures to assess them. However, we prefer a different
approach. All 47 measures are calculated for a moving time windows of a certain length
and the vector of performance measure values for a window at a given time step t is
then used as a finger print of the model performance during this time step. Periods with
comparable finger prints can then be identified and characterized.20

The selection of window size depends on the process of interest and the data quality
(Wagener et al., 2003). For example slow recession processes require wider windows.
If data quality is suboptimal, large windows will help to reduce the influence of data er-
rors. After some preliminary tests we selected the window size large enough to capture
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large events (Fig. 1). A time window of 10 days and 5 days was chosen as a compro-
mise between looking for the local properties in the time series and having enough
data to actually compute the values for the first and second case study, respectively.
We repeated the first case study also with window sizes of 5 days and 15 days in order
to test the sensitivity of the method with respect to the selected window length.5

To reduce the number of performance measures M used for the subsequent steps,
only one measure was used from each set of highly correlated performance measures
(R>0.85). The vector P (t) of the remaining M∗ performance measures was then used
as the finger print of the model performance for a given time step t. Of course the initial
selection of the performance measures is likely to influence the result of the analysis.10

We regard our set of 47 measures as sufficiently large to cover the important aspects of
deviations between two time series. Therefore we do not expect the results to change
substantially if additional measures were added.

2.2 Synthetic errors

There is a need to better understand performance measures and their relationship.15

Two approaches exist in the literature to get familiarized with unknown measures: the
first option is to calculate benchmark values for reference simple models (Schaefli and
Gupta, 2007). The second option is to create artificial errors (Cloke and Pappenberger,
2008; Krause et al., 2005; Dawson et al., 2007). We used the second approach by
generating synthetic errors for a single peak event as test cases (Fig. 2). The peak20

was modelled as

Q(t)=


Qb t<t0
Qb ∗ e(t−t0)∗kc t0<=t<tmax

Qb+
(
Qb ∗ etmax∗kc−Qb

)
∗ e(t−tmax)∗kr tmax<=t

(8)

Where kr is the recession constant (negative), kc is the constant for the rise phase and
Qb is the base flow. t, t0 and tmax are the time step, the time step when the event starts
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and the time step of the maximum peak, respectively. We varied the timing, baseflow,
the size of the event and the recession constant to obtain the combinations shown in
Fig. 2. Each synthetic error was generated in both possible directions of deviation (e.g.
under- and overestimation) and with three different levels (small, medium and large
deviation).5

2.3 Data reduction with SOM

The dimensionality of the simulated time steps N is reduced with self-organizing maps
(SOMs). A SOM (for an example see Fig. 5) is a method to produce a (typically) two di-
mensional, discretized representation of a higher-dimensional input space (Kohonen,
1995). The topological properties of the input space are preserved in the represen-10

tation of the SOM. Here, the SOM helps to generate and visualize a typology of the
model performance finger prints. The matrix P=(P (t))t=1,...,N of all performance mea-
sures is used as an input to the SOM. The SOM is an artificial neural network with a
number xmax ∗ ymax of cells (or neurons) corresponding to the dimension of the map
xmax, ymax. Each cell has a position on the map x, y and a weight vector v=(vj )j=1,..,M∗15

with the same dimension as the input vector P
(t). The weight vectors are initialized

with random values. Then the training phase takes place with the following two steps
cycling multiple times through all P (t):

1. The cell most similar (best match, short BM) to the input vector P (t) is determined
using a Euclidean distance to the weight vector v .20

2. The weight for BM and its neighbours on the map are updated:

v (i+1)=v i+σ(x, y,BM, i ) ∗ α(i ) ∗ (P (t)−v i ) (9)

Where x, y are the cell coordinates, α(i ) is the learning coefficient which monoton-
ically decreases with iteration i and σ(x, y,BM, i ) is the neighbourhood function –
often a Gaussian function.25
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The resulting map arranges similar vectors of performance measures P
(t) close to-

gether while dissimilar are arranged apart. After the training phase, new input vectors
can be placed on the map by finding the corresponding BM. The synthetic peak errors
are placed on the map in this way in order to get a better understanding of the map.

We trained a SOM with a hexagonal and Gaussian neighbourhood with the matrix P.5

Some of the performance measures were log-transformed (MARE, RAE, IRMSE, rk ,
RSMSGE) or transformed with the fifth root (where log-transformation is not possible
due to negative values: rd and ttest) and all measures where normalized to the range
[0, 1] in order to reduce effects from the differing distribution shapes and scales of the
performance measures.10

The representation of the SOM (for an example see Fig. 5 top left plot) is based on
work by Cottrell and de Bodt (1996). Each cell of the neural network is represented
as a polygon. The intensity of the colouring represents the number of P (t) associated
with the cell (i.e. the cell weight vector v was the best match BM to the input vector
P

(t)). The shape of the polygon represents the distance (Euclidean distance) to the15

eight neighbouring cells. Large polygons indicate a small distance to the neighbour
while if the polygon shrinks in one direction, the distance to the cell in this direction
is large. Colouring of the cells can also be used to show the distribution of a specific
performance measure on the map.

2.4 Identification of regions of the SOM20

To further summarize the results, characteristic regions of the SOM with similar weight
vectors v were determined using fuzzy c-means clustering (Bezdek, 1981). As in all
clustering algorithms, the v are divided into clusters, such that they are as similar as
possible within the same cluster and as different as possible between clusters. In fuzzy
clustering, the v can belong to multiple clusters with all the fuzzy membership values25

µi summing up to 1. In c-means clustering the cluster memberships µki are found by
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minimizing the function

J=
n∑

k=1

c∑
i=1

(µki )
m||v k−w i ||2 (10)

where the w i are the cluster centres, v k are the weight vectors of the SOM, and m is
a parameter modifying the weight of each fuzzy membership, and || ||2 is the Euclidean
distance.5

As suggested by Choi and Beven (2007), the validity index VXB from Xie and Beni
(1991) can be used to determine the optimal number of clusters:

VXB=

∑n
k=1

∑c
i=1(µki )

m||v k−w i ||
2

c
(
mini 6=k ||w i−w k ||2

) (11)

The number of clusters is thereby optimized in correspondence with the goal of the
cluster analysis to have the v as similar a possible within a cluster (compactness –10

numerator in Eq. 11) and as dissimilar as possible between classes (separation – de-
nominator in Eq. 11). The optimal number of clusters is where VXB is at its minimum.

For the interpretation of the SOM, box plots of the performance measures for each
cluster, the occurrence of the clusters in the time series and a visual inspection of the
SOM are used.15

3 Study areas

3.1 The Weisseritz catchment

For the first case study, the catchment of the Wilde Weisseritz, situated in the eastern
Ore Mountains at the Czech-German border was used (Fig. 3a). The lowest gauging
station used in the study was Ammelsdorf (49.3 km2). The study area has an elevation20

of 530 to about 900 m a.s.l. and slopes are gentle with an average of 7◦, 99% are
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<20◦; calculated from a 90 m digital elevation model (SRTM, 2002). Soils are mostly
campisoils. The climate is moderate. Land use is dominated by forests (≈30%) and
agriculture (≈50%). Annual precipitation for this catchment is 1120 mm/year for the
two years of the simulation period from 1 June 2000 until 1 June 2002. During winter,
the catchment usually has a snow cover of up to about 1 m for 1 to 4 months with5

high flows during the snow melt period (Fig. 8a shows the pronounced peaks during
spring). High flows can also be induced by convective events during summer. WASY
(2006) conclude from their analysis based on topography, soil types and land use,
that subsurface stormflow is likely to be the dominant process. Meteorological data
for 11 surrounding climate stations was obtained from the German Weather Service10

(DWD, 2007). Discharge data, as well as data about land use and soil was obtained
from (LfUG, 2007).

3.2 The Malalcahuello catchment

As a second case study the Malalcahuello catchment (Chile) was used. This research
area is located in the Reserva Forestal Malalcahuello, on the southern slope of Volcán15

Lonquimay. The catchment covers an area of 6.26 km2. Elevations range from 1120 m
to 1856 m a.s.l., with average slopes of 51%. 80% of the catchment is covered with
native forest. There is no anthropogenic intervention.

The soils are young, little developed and strongly layered volcanic ash soils (An-
dosols, in Chile known as Trumaos) (Iroumé, 2003; Blume et al., 2008). High perme-20

abilities (saturated and unsaturated), high porosities and low bulk densities are typical
for volcanic ash soils. Soil hydraulic conductivities for the soils in the Malalcahuello
catchment range from 1.22∗10−5 to 5.53∗10−3 m/s for the top 45 cm. Porosities for all
horizons sampled range from 56.8% to 82.1%. Layer thickness is also highly heteroge-
neous, and can range from 2–4 cm to several meters. For a more detailed description25

of the Malalcahuello catchment see (Blume et al., 2008).
The climate of this area is humid-temperate with altitudinal effects. There is snow

at higher elevations during winter and little precipitation during the summer months
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January and February. Annual rainfall amounts range from 2000 to over 3000 mm, de-
pending on elevation. An overview of catchment topography and basic instrumentation
is given in Fig. 3b.

4 Hydrological models

4.1 WaSiM-ETH5

As subsurface storm flow is deemed to be a dominant process in the Weisseritz catch-
ment, the topmodel approach (Beven and Kirby, 1979) appears suitable to concep-
tualise runoff generation. We therefore selected WaSiM-ETH, which is a modular,
deterministic and distributed water balance model based on the topmodel approach
(Schulla and Jasper, 2001). It was used for the Weisseritz catchment with a regularly10

spaced grid of 100 m resolution and an hourly time step. Interception, evapotranspira-
tion (Penman-Monteith), and infiltration (Green and Ampt approach) as well as snow
dynamics are also included as modules. The unsaturated zone is described based
on the topmodel approach with the topographic index (Beven and Kirby, 1979), which
determines flow based on the saturation deficit and its spatial distribution, instead of15

modelling the soil water movement explicitly. For the exact formulations of WaSiM-ETH
see (Schulla and Jasper, 2001). We used an extension by Niehoff et al. (2002) which
includes macropore flow, siltation and water retention in the landscape. Direct flow
and interflow are calculated as linear storage per grid cell, while baseflow is calculated
as linear storage for the entire subcatchment. The snow cover dynamics are simu-20

lated with a temperature index approach (Rango and Martinec, 1995). The routing of
streamflow is computed with the kinematic wave approach (Niehoff et al., 2002). The
model was run with hourly time steps.
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4.2 Catflow

The hillslope module of the physically based model Catflow (Zehe and Fluhler, 2001;
Zehe and Bloschl, 2004; Zehe et al., 2005) was used to model runoff generation in
the Malalcahuello catchment. It relies on detailed process representation such as soil
water dynamics with the Richards equation (mixed form), evapotranspiration with the5

Penman-Monteith equation, surface runoff with the convection diffusion approximation
to the 1D Saint Venant equation. The processes saturation and infiltration excess
runoff, reinfiltration of surface runoff, lateral subsurface flow and return flow can be
simulated. Macropores can be included with a simplified effective approach (Zehe
et al., 2001). The simulation time step is dynamically adjusted to achieve a fast conver-10

gence of the Picard iteration. The hillslope is discretized as a 2-D vertical grid along the
main slope line. This grid is defined by curvilinear coordinates (Zehe et al., 2001). As
the hillslope is defined along its main slope line each element extends over the whole
width of the hillslope, making the representation quasi-3-D. Catflow has proved to be
successful for a number of applications (Zehe et al., 2005, 2001; Lindenmaier et al.,15

2005; Lee et al., 2007; Graeff et al., 2008).
For this investigation the hillslope module was used to simulate a single hillslope.

As the outflow at the lower end of the slope is compared with stream hydrographs
measured at the main stream gauging station, this carries the inherent assumption
that the structure and physical characteristics of this single slope are representative20

of all slopes in the catchment. While this is a strong assumption it is not completely
unrealistic for the Malalcahuello catchment.

For soil parametrization values of saturated hydraulic conductivities, porosities, pF
curves and fitted Van Genuchten parameters were used. Details on set-up and
parametrization can be found in (Blume, 2008). 2004 data from a climate station just25

outside the catchment was used as climatic input data with a temporal resolution of
30 min. Rainfall time series stem from a rain gauge close to the catchment outlet.
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5 Weisseritz case study – results

5.1 Performance measures

The performance measures introduced in Sect. 2.1 were calculated for the entire simu-
lation period with a moving 10 day window (N=14821). After removing highly correlated
performance measures (see Table 2), a set of 23 measures remained. The summary5

of the measures shows how the measures vary greatly in their range of values (Ta-
ble 3). The error measures based on the differences (PDIFF, ME) are not bound at
the upper or lower end and have a value of 0 for perfectly matching time series. The
error measures based on absolute or squared differences (AME, MAE, RAE, MARE,
MSLE, MSDE, CMSE, MAOE) start from 0 for no error and are not limited at the upper10

end. The geometric error (RSMSGE) is bound at the lower end at 1 and unbound at
the upper end. LCS varies between 1 (for no error) and 0. The relative measures
(rk , and rd ) have a value of 1 for no error and are above or below 1 (always positive)
depending on the direction of the error. The ttest statistics has a value of 0 for perfect
agreement and has positive or negative values for underestimated and overestimated15

time series, respectively. The other measures have the following ranges: −1≤Rsqr ≤1,
−∞≤CE≤1, 0<IoAd≤1 (1 indicates no error for these three measures), tL and NSC
are limited by the window width with a “best” value of 0, 0≤Qe≤1 (the value for no error
is defined by the shape of the error distribution – for normally distributed errors Qe=0.5
for no error).20

5.2 Synthetic errors

The synthetic peak errors are used to improve our understanding of the performance
measures. In Fig. 4, five plots show the response of some exemplary measures (y-
axis) to the synthetic peak errors, each of which is shown with a different symbol. On
the x-axis, no error would be in the centre and the severity of the error increases to25

each side. Some performance measures are very specific to a certain type of error.
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9 out of 23 measures react (similar to the Nash-Sutcliffe efficiency CE in Fig. 4) to all
peak errors (AME, MAE, RAE, MARE, IoAd, MSLE, MSDE, CMSE). PDIFF and PEP
are insensitive to the error in recession (error 3), lag (error 4) and width (error 6), which
do not change the maximum of the peak. The ME and the ttest show no or only little
sensitivity to the lag time error (error 4) and the error in peak size with correct total5

volume (error 5). Rsqr, LCS and RSMSGE are insensitive to errors related to shifts
(errors 2 and 8) and the former two are also insensitive to peak size errors (1). tL,
DE and MAOE are only sensitive to the lag time (error 4) and the missed/false peak
(error 7). rd and rk (not shown) are sensitive to errors that result in a different slope
at the end of the time window compared to the reference peak (errors 3, 5 and 6).10

Similarly, Qe (not shown) is only sensitive to errors that result in a different level at the
end of the time window (errors 2, 3, 6, 7 and 8).

5.3 Data reduction with SOM

Based on the normalized p
(t) of the model performance a SOM was created. The

representation according to Cottrell and de Bodt (1996) is shown in the upper left corner15

of Fig. 5. Remember that the shape of the polygons indicates the distance between the
cells and the intensity of the colour is proportional to the number of p(t) represented by
a cell.

The next 23 representations of the SOM (one for each of the performance measures
found in Sect. 5.1) in Fig. 5 help to identify a typology of the model performance fin-20

ger prints. The value associated with each cell is colour coded in grey tones starting
with white for no error and ending in black at the highest deviation from the optimal
value. For performance measures with a central optimal value, no error is – again –
shown in white while errors are displayed in red in one direction and blue in the other
direction. A careful inspection of the SOMs (Fig. 5) allows identification of patterns that25

are related to certain errors. For instance on the right hand side and the centre of the
SOM positive lag times can be found. In the bottom right corner the model strongly
overestimates observed peaks as indicated by negative values for ttest and ME, PEP,
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and PDIFF. However, a clear interpretation appears still to be difficult. Hence, a further
condensation of the SOMs is necessary to identify how different criteria cluster into dif-
ferent error classes and how we can interpret these error classes with respect to model
failure.

5.4 Identification of regions of the SOM5

In order to cluster the SOM for further identification of error classes, fuzzy c-means
clustering was applied to the weight vectors v of the SOM. The validity index VXB for
the identification of the optimal cluster number is shown in Fig. 6. Based on the VXB we
chose the solution with 6 clusters for further analysis. We also checked if the clustering
algorithm could be applied to the p

(t) directly. However, we did not find satisfactory10

results: The validity index was lowest for two clusters with a value of about 100 –
indicating no successful separation.

The 6 clusters are represented with colour coding in the SOM in the bottom right
corner of Fig. 5. No p

(t) vectors are associated with uncoloured cells; i.e. these cells
were never identified as best match to any input vector.15

Looking at Fig. 5 allows us to make some first statements about the model perfor-
mance found in each cluster, e.g. the overestimation by the model (negative PDIFF,
ME, PEP and ttest) is found in cluster B. To support the interpretation of the clusters,
box plots for each cluster (Fig. 7a) were created for each of the performance measures
from the normalized weight vectors v of the cells in the SOM. Note that the y-axis in the20

box plot shows normalized values as described in Sect. 2.3, whereas non-normalized
values were used for the labels in Fig. 5. The normalized weight vectors v do not span
the entire range from 0 to 1 because each cell in the SOM only represents the centre
of the associated p

(t).
The findings from the box plots are summarized in Table 4. If the median of the v j25

belonging to a cluster was closest or furthest to the value for no error, this cluster was
entered into the table as “best” or “worst”, respectively. “Worst” was replaced by “high”
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and “low” if the deviation occurred to both sides of the optimal value. If the median
of the second highest/lowest cluster was within the inner quartiles, it was also entered
into the table.

Summarizing the SOMs (Fig. 5), the box plot (Fig. 7a) and Table 4 we find that
cluster A shows the best fit according to over half (13) of the performance measures.5

In this cluster there is thus a good agreement in dynamics and amounts of simulated
and observed stream flows. Furthermore, low values for rk (the recession constant
is overestimated by the model) are observed. The bad values for NSC indicate that
the modelled time series changes often between under- and overestimation, which is
most likely caused by small deviations. Cluster B has good values for 9 error measures10

indicating that the observed and modelled time series match well in terms of correlation
(Rsqr, DE, LCS, tL) and size of the peaks (PDIFF). Data agree well after centring
(CMSE), ordering (MAOE) or rescaling (RSMSGE, MSLE). Low values for PEP, ME and
for the t-test indicate that the model overestimates the observed data. Low values for
rk indicate, that also the recession constant is overestimated by the model. Cluster C15

performs well for AME, MAE, ME, PEP ttest and CMSE which shows that the error
is always relatively small and that the maxima agree. Bad performance in terms of
NSC, Rsqr, LCS as well as high lag times show that the timing is poor. This type
of error might occur for small peaks where the timing is not well represented in the
model. Cluster D shows good values for the t-test which indicates that the modelled and20

observed time series can not be distinguished based on this test, i.e. the distribution
of the differences can not be distinguished from zero. However, bad values indicate
that the overall magnitude (MAE), the magnitude of the peaks (AME, PDIFF), and the
dynamics (MSDE, DE, CMSE, MAOE) are not reproduced well. The negative lag times
indicate problems with the timing. Cluster E has good values for CMSE which indicates25

that the time series agree well after centring. Also the recession (rk) is represented
well. High values for ME, PEP, ttest and Qe show that the model strongly underestimates
the observed values. In Cluster F the dynamics are not well represented as indicated
by bad values for CE, RAE, Rsqr, IoAd, rd , MAOE and LCS. Good values for AME
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and PDIFF show that the maximum errors are small. Good values for MSDE, DE and
CMSE show that the derivatives and the direction of the flow is represented well.

In order to associate the synthetic peak errors (Sect. 5.2) with the error clusters, the
synthetic peak errors were placed on the SOM by finding the best matching cell (BM).
Table 5 shows to which clusters the synthetic peak errors belong. Level 1 to 3 cor-5

responds to overestimated values by the model compared to the observed data (the
darker grey peaks in Fig. 2) while levels 4 to 6 correspond underestimated values (to
the lighter grey peaks). The short cluster descriptions in parentheses in the following
paragraph are a very condensed summary of the boxplot analysis. None of the er-
rors were placed within Cluster A (good fit between model and observation). Cluster B10

(model performs well but overestimates data) includes mostly the small and intermedi-
ate overestimations. Cluster C (relatively small errors but positive lag times) includes
lag time errors and a number of errors which indicate underestimation as well as miss-
ing peaks. Cluster D (badly represented peaks and the negative lag times) includes a
number of strong overestimating errors, strong negative lag times and modelled peaks,15

where no peak was present in the observed data. Cluster E (strong underestimation
due to shift) includes underestimating peak errors, mainly due to shifts (in presence
or absence of peaks). Cluster F (bad representation of the dynamics, small maximum
error, underestimation of peaks) includes all peaks that are too narrow, and peaks over-
estimating the recession constant, both indicating an underestimation of the observed20

data.
The occurrence of the error classes in time is shown in Fig. 8a as colour bars in

the discharge time series. The colour coding is equivalent to Figs. 5 and 7a. The plot
shows clear patterns in the occurrence of the error classes. The following patterns
were identified by visual inspection: Cluster A (model performs well) and B (model25

performs well, but overestimates observed data) occur during snow melt events and the
fall season. Cluster C (underestimation with positive lag times) occurs mainly during
fall and spring season. Cluster D (strong overestimation of peaks and negative lag
times) occurs during periods with intermediate dynamics in winter. The timing and
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representation is unsatisfactory for data belonging to this cluster. Further investigations
(not presented here) showed that the simple temperature index approach used for the
snow model is not able to capture both, temperature and radiation induced snow melt
events. Therefore, while the model is able to capture some larger snow melt events
(Cluster A) in a satisfactory way, other snow melt events are not represented well.5

This is in agreement with Rango and Martinec (1995) who report that the degree-day
method can lead to errors because of the missing radiation component. Cluster E
(strong underestimation due to shift) occurs during the low flow period in summer,
where flows are strongly underestimated with the current model. Finally, cluster F (bad
representation of dynamics, too small peaks) occurs during times where model shows10

dynamics which do not occur in the observed data.
The entire case study was repeated two more times, once with a time window size of

5 days and once with a 15 day window, in order to test the sensitivity of the method for
this choice. Detailed results from this comparison are available from the corresponding
author. In short, the alternative window sizes resulted in 3 and 4 clusters for the 515

and 15 day window, respectively. Clusters A and E were found in both cases with an
equivalent descriptions of the error types and temporal occurrence of the error clusters.

6 Malalcahuello case study – results

6.1 Performance measures and synthetic errors

For the Malalcahuello case study a time window of 120 h (5 days) was chosen as20

streamflow here is faster in response and dynamics than in the Weisseritz catchment. A
set of 17 performance measures (N=3240) remained after excluding correlated mea-
sures as well as measures that are sensitive to noise in the measured data (i.e. all
measures based on derivatives). 14 of these measures were also used in the Weis-
seritz case study, the new ones being MRE, IRMSE and RSMSE. The 8 synthetic errors25

proposed in Sect. 3.2 were adapted for the time window as well as the range in flows.
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6.2 SOM and fuzzy clustering

As in the Weisseritz case study, data reduction was achieved by producing a self-
organizing map. The cluster analysis of the SOM regions resulted in the identification
of 6 error clusters. The box plots of for each performance measure and cluster are
shown in Fig. 7b. A summary of the specific characteristics of each cluster is given5

in Table 4. While it is difficult to identify a single “best” cluster, cluster E can easily
be identified as having the worst performance measures (scores worst on 6 of the
performance measures and best only on 1. Peaks as well as overall time series are
underestimated (values of PDIFF, PEP and ME slightly above target value). The cor-
relation between modelled and measured time series is low as it has the worst scores10

on Rsqr, tL, and DE. Furthermore cluster D stands out as having best performances
for the measures focusing on the peaks (PDIFF and PEP), while it also scores good to
medium on the other performance measures. It thus describes times where the model
has only slight over and underestimation in peaks, quite good correlation and quite low
mean errors. Cluster A shows the best performance for those measures looking at15

the correlation of the time series (CE, Rsqr, DE, LCS), but also has the characteristic
values for overestimating peaks (PDIFF and PEP below aim) as well as overestimating
the time series in general (ME below aim). Cluster B also has good/best values for
CE and Rsqr (good correlation) but strongly overestimates the time series (ME), also
if measured on a relative scale (MARE) and after rescaling (RSMSE). Also, the peaks20

are strongly overestimated in this cluster(AME, PDIFF and PEP). Cluster C also shows
good correlation (Rsqr) and little time lag (tL) but scores low on CE (which means
peaks are badly reproduced), and the relative errors MARE and IRMSE. Peaks as well
as the overall time series are generally underestimated (PDIFF, PEP and ME above
aim). Cluster F scores well on mean and mean relative errors (ME, MARE, MRE) as25

well as on the measures describing the peaks (PDIFF and PEP). In this case a slight
over- or underestimation of the peaks is possible. Bad scores were achieved for the
measures NSC and tL.

3191

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/5/3169/2008/hessd-5-3169-2008-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/5/3169/2008/hessd-5-3169-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
5, 3169–3211, 2008

Temporal dynamics
of model

performance

D. E. Reusser et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Placing the error vectors produced by the synthetic peak errors (corresponding to
Fig. 4) on the SOM further improves the characterization of the error clusters (see
Table 5): Cluster A (good correlation, but overestimation) contains a number of overes-
timating synthetic errors and the earliest peak (error 4). Again, the short description in
parentheses is the condensed summary of the boxplot analysis. Cluster B (good cor-5

relation, strong overestimation, also for relative and rescaled data, bad reproduction of
the peak) contains all but one errors in peak size with and without correct total volume
(errors 1 and 5). In addition, all but the extreme lag time errors (4) and a number of
other, intermediate errors are found in this cluster. Cluster C (underestimation) contains
all errors shifting the modelled below the measured time series (error 2, error 7a-level10

1 and error 8). Cluster D (slight over and underestimation in peaks, good correlation,
low mean errors) does not contain any of the synthetic peak errors. Cluster E (worst
performance, underestimation) also does not contain any of the synthetic peak errors,
however, introducing a small random noise to the reference recession in error 8 (not
shown) causes all shifts below this reference to be placed in this cluster. Cluster F15

(small mean error, peaks well represented but with lag times) contains a number of
underestimating synthetic errors (3, 6, 7b) and the latest peak (4).

Looking at the distribution of the error clusters over the time series (Fig. 8b) we
find a distinct pattern of errors, which mainly occur in larger blocks. Cluster A (good
correlation, but overestimation) was attributed to a longer period in April and May, while20

cluster B (good correlation, strong overestimation) is allocated to a series of peaks in
June (high errors for PDIFF and PEP as well as AME, see Fig. 7b). Times attributed
to cluster C (quite good correlation, underestimation) are the late recessions in May
and August. These periods have very little dynamics and the model does indeed show
a general underestimation of flow. Cluster D was characterized as quite balanced25

around the measured data with little deviation and did not contain any of these synthetic
errors. This error occurs in shorter time blocks throughout the time series. Cluster E is
attributed to the late recessions in June and August where flow as well as dynamics are
underestimated. Some of these discrepancies in dynamics, especially in August, are
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the result of snow melt. As Catflow does not contain a snow model, these dynamics
cannot be reproduced in the simulation. This confirms the findings from the synthetic
error analysis where only the introduction of variability or noise in the reference time
series which was not reproduced by the model, resulted in an error that would be
classified as belonging to cluster E. For the portion of the time series attributed to5

cluster F, the long term behaviour seems to be reproduced quite well. However, for
the small short term variability during this period there seems to be little correlation
between the time series (late July early August) and we find an over- as well as an
underestimation of peaks. This is in line with the results in Fig. 7b: low Rsqr, but best
performance on ME, MARE and MRE. Combining the findings from the three parts of10

our analysis: a) cluster description with the help of box plots, b) placement of synthetic
errors within the SOM and thus allocation to a specific cluster as well as c) the analysis
of cluster allocation over time improves our understanding of model performance and
model shortcomings.

7 Summary and conclusions15

We presented a new method to analyse the temporal dynamics of the performance
of hydrological models and to characterize the types of errors in more detail. The
methodology was applied successfully in two case studies, differing strongly in both,
model type and streamflow dynamics and thus seems to be applicable for a wide range
of research areas and modelling approaches. In the two case studies, we used a set20

of uncorrelated performance measures calculated for a moving 5 or 10 day window
to characterize the temporal dynamics of the model performance (model performance
finger print). A set of synthetic peak errors was used to test the sensitivity of the
performance measures. Some performance measures were very specific for a certain
type of error, while others reacted to all types of error. As our results showed, the25

combination of multiple measures provides a better characterization of the performance
compared to any single measure, which agrees with the basic idea of multi-objective
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calibrations.
Self organizing maps (SOM) were used to reduce the amount of data and in a subse-

quent step, different clusters of performance finger prints were identified. Using the raw
data (before data reduction with the SOM) did not result in an acceptable separation
of error clusters. The synthetic peaks were very helpful to characterize the different5

clusters in addition to the pattern observed from the different performance measures.
In both case studies we found 6 classes or clusters differing in various performance

measures (Fig. 7). A temporal pattern of the occurrence could be identified in both
cases, indicating that the model has different deviations during the different phases.
For the Weisseritz case study, errors in timing (indicated by lag times) are observed10

more often during snow accumulation and melt periods. Acceptable agreement be-
tween modelled and observed data occurs in the winter and fall season. During low
flow periods in summer, the discharge is strongly underestimated. In the Malalcahuello
case study flow was found to be underestimated during the longer recession periods.
In some recession periods the model completely fails to reproduce stream flow dynam-15

ics, causing attribution to a different error class. The three major events in June form
a distinct group as they are strongly overestimated by the model. Both the missed
dynamics as well as this strong overestimation are likely to be the result of the lacking
representation of snow dynamics in the model. While some of these errors are already
apparent in a first visual inspection of the model output, others are less obvious and20

might be overlooked. The here proposed methodology allows for a simple classification
of these errors and at the same time gives a clear indication of what type of errors are
occurring at what time. This way even less obvious errors can be found to appear re-
peatedly over time and especially these patterns of error repetition are likely to contain
valuable information if they can be connected with parameter sensitivities.25

The next step will thus be to combine the analysis of the temporal dynamics of model
performance with the analysis of the temporal dynamics of parameter sensitivity in or-
der to enhance our understanding of the model. The model performance will tell us
during which periods the model is failing while the parameter sensitivity will show which
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model component is the most important during this periods. Overall the methodology
presented here proves to be viable and valuable for the analysis of the temporal dy-
namics of model performance.
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Table 1. List of performance measures and their abbreviations.

Abr. Full Name Abr. Full Name

from Dawson et al. (2007) from Jachner et al. (2007)
MSE mean squared error CMAE centred mean absolute error
RMSE root mean squared error CMSE centred mean squared error
IRMSE inertia root mean squared error RCMSE root centred mean squared error
R4MS4E fourth root mean quadrupled error SMAE scaled mean absolute error
CE Nash-Sutcliffe efficiency SMSE scaled mean squared error
PI coefficient of persistence RSMSE root scaled mean squared error
AME absolute maximum error MAPE mean absolute percentage error
PDIFF peak difference MSPE mean squared percentage error
MAE mean absolute error RMSPE root mean squared percentage error
ME mean error MALE mean absolute log error
NSC number of sign changes MSLE mean squared log error
RAE relative absolute error RMSLE root mean squared log error
PEP percent error in peak MAGE mean absolute geometric error
MARE mean absolute relative error MSGE mean squared geometric error
MdAPE median absolute percentage error RMSGE root mean squared geometric error
MRE mean relative error RMSOE root mean squared ordinal error
MSRE mean squared relative error MAOE mean absolute ordinal error
RVE relative volume error MSOE mean squared ordinal error
Rsqr the square of the Pearson RSMSGE root scaled mean squared

correlation coefficient geometric error
IoAd index of agreement LCS longest common sequence
MSDE mean squared derivative error additional measures
ttest value of the t-test statistics tL lag time

rk recession error
rd slope error
DE direction error
Qe error quantile
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Table 2. Performance measures to remove based on high correlation for the Weisseritz study.

Measure to keep Correlated measure (R>0.85) to be removed

CE PI
AME RMSE, R4MS4E, CMAE, MSE, RCMSE, RSMSE, SMAE
PEP MRE, MSRE, RVE
MARE MdAPE, MSRE, IRMSE, MAPE
MSLE MAGE, MALE, RMSGE, RMSLE
CMSE MSE, RCMSE, RSMSE, SMAE, SMSE
MAOE MSOE, RMSOE
RSMSGE RSMSLE, SMAGE, SMALE, SMSLE
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Table 3. Summary of performance measures.

Measure Min 1st Q. Median Mean 3rd Q. Max

CE −8.98 −3.38 −2.03 −2.14 −0.52 0.84
AME 0.0072 0.0328 0.0651 0.0880 0.1042 0.4367
PDIFF −0.1966 −0.0074 0.0277 0.0383 0.0552 0.4137
MAE 0.0036 0.0149 0.0239 0.0299 0.0404 0.1139
ME −0.0955 −0.0054 0.0113 0.0082 0.0248 0.0689
NSC 0.0 0.0 1.0 1.8 3.0 9.0
RAE 0.32 1.19 2.21 4.38 4.05 254.21
PEP −718.2 −8.4 31.7 6.3 63.9 98.6
MARE 0.10 0.32 0.60 0.77 0.88 6.08
Rsqr 1.4e-10 1.3e−01 3.6e−01 3.8e−01 5.9e−01 9.8e−01
IoAd 3.2e-07 2.7e−01 4.0e−01 4.4e−01 6.1e−01 9.5e−01
MSLE 0.017 0.164 0.654 2.210 2.672 22.404
MSDE 3.4e-09 8.3e−07 3.1e−06 1.3e−05 1.1e−05 2.1e−04
ttest −66.8 −5.7 8.7 17.4 35.1 183.4
tl −20.0 0.0 3.0 3.5 15.0 20.0
rd −1.7e+03 0.0e+00 8.2e−02 1.0e+00 1.0e+00 4.7e+03
DE 0 28 43 48 62 197
rk 0.000 0.021 0.037 6.029 0.080 109.351
CMSE 1.3e−06 6.1e−05 2.0e−04 1.2e−03 9.4e−04 1.7e−02
MAOE 0.0017 0.1363 0.2053 0.2277 0.3069 0.5021
LCS 0.01 0.45 0.58 0.57 0.70 0.98
RSMSGE 1.1 1.3 1.5 1.7 1.9 3.7
Qe 6.2e−05 2.4e−01 5.2e−01 5.1e−01 7.6e−01 1.0e+00
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Table 4. Characterization of performance measures clusters derived from visual inspection of
the SOMs in Fig. 5 and from the box plots in Fig. 7a and b.

Cluster Description

Weisseritz Case Study
A best: CE, ME, RAE, PEP, MARE, Rsqr, IoAd, MSLE, ttest, rd , MAOE, LCS, Qe;

worst: NSC, rk
B best: PDIFF, Rsqr, MSLE, tL, DE, CMSE, MAOE, LCS, RSMSGE;

worst: rd , rk ;
low: ME, PEP, ttest, Qe

C best: AME, MAE, ME, PEP, ttest, CMSE, Qe;
worst: NSC, Rsqr, rk , LCS;
high: tL

D best: ttest;
worst: AME, PDIFF, MAE, MSDE, rd , DE, rk , CMSE, MAOE;
low: tL

E best: NSC, rk , CMSE;
worst: MARE, MSLE, RSMSGE;
high: ME, PEP, ttest, tL, Qe

F best: AME, PDIFF, MSDE, DE, rk , CMSE, Qe;
worst: CE, RAE, Rsqr, IoAd, rd , MAOE, LCS;
low: PEP

Malalcahuello Case Study
A best: CE, MARE, Rsqr, DE, MAOE, LCS;

low: MRE, ttest, Qe
B best: CE, Rsqr, IRMSE, MAOE, LCS;

worst: AME, NSC, MARE, RSMSE;
low: PDIFF, ME, PEP, MRE, ttest

C best: AME, NSC, Rsqr, tL, MAOE, RSMSE, Qe;
worst: CE, MARE, IRMSE, LCS;
high: PDIFF, ME, PEP, MRE, ttest

D best: PDIFF, Rsqr
E best: NSC;

worst: MARE, Rsqr, tL, DE, MAOE;
high: PDIFF, ME, PEP, MRE, Qe

F best: ME, PEP, MARE, MRE, ttest;
worst: NSC, tL
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Table 5. Cluster allocation of synthetic peak errors. For details on peak characteristics see
Figs. 2 and 4. Levels 1–3 generally overestimate flow while levels 4–6 underestimate it.

Weisseritz Malalcahuello
nr. error 1 2 3 4 5 6 1 2 3 4 5 6

1 peak size D B B C C C A B B B B B
2 shift D B B C E E A A A C C C
3 recession B B B F E F A A B F F F
4 lag D B B B C C F B B B B A
5 size./integr. D B B B C C B B B B B B
6 width B B B F F F A A B B F F
7 peak/no peak B D D C C E C A A B F F
8 late recession B B B E E E A A A C C C
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Fig. 1. Size of the selected time window with respect to observed events (Case study Weisseritz
catchment).

3204

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/5/3169/2008/hessd-5-3169-2008-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/5/3169/2008/hessd-5-3169-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
5, 3169–3211, 2008

Temporal dynamics
of model

performance

D. E. Reusser et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

0.
00

0.
10

0.
20 1 2 3 4 5

0 50 150

0.
00

0.
10

0.
20 6

0 50 150

7a

0 50 150

7b

0 50 150

8

sp
ec

ifi
c 

di
sc

ha
rg

e/
m

m
/h

time/h

Fig. 2. Examples of synthetic errors for a single peak event: Peak over- or underestimation (1),
baseflow over- or underestimation (2), recession too fast or too slow (3), timing: too late or too
early (4), maximum peak flow over- or underestimation, but with correct total volume (5), peak
too wide (start too early, recession too slow) or too narrow (6), erroneously simulated peak (7a)
or missed peak (7b), and over- or underestimation during a late recession phase (8). The dark
grey peaks will be labelled 1 to 3 with decreasing error in the remainder of this paper, while
light grey peaks will be labelled 4 to 6 with increasing error.
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Fig. 3: Maps of both research catchments (scales in m).

catchment covers an area of 6.26km2. Elevations range from 1120m to 1856m above sea level,
with average slopes of 51%. 80% of the catchment is covered with native forest. There is no
anthropogenic intervention.

The soils are young, little developed and strongly layered volcanic ash soils(Andosols, in
Chile known as Trumaos) (Iroumé, 2003; Blume et al., 2008). High permeabilities (saturated
and unsaturated), high porosities and low bulk densities are typical for volcanic ash soils. Soil
hydraulic conductivities for the soils in the Malalcahuello catchment range from 1.22 ∗ 10−5

to 5.53 ∗ 10−3m/s for the top 45cm. Porosities for all horizons sampled range from 56.8%
to 82.1%. Layer thickness is also highly heterogeneous, and can range from 2–4cm to several
meters. For a more detailed description of the Malalcahuello catchment see (Blume et al., 2008).

The climate of this area is humid-temperate with altitudinal effects. There is snow at higher
elevations during winter and little precipitation during the summer months January and Febru-
ary. Annual rainfall amounts range from 2000 to over 3000mm, depending on elevation. An
overview of catchment topography and basic instrumentation is given in Fig.3b.
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Fig. 4. Performance measures for synthetic peak errors. Along the x-axes, the degree of error
varies, with index 1 to 3 indicating a peak that is much (some, little) too large (shift to too high
discharges, too slow recession, too late, too wide) and 4 to 6 indicating too small peaks. The
yellow line indicates the position of “perfect fit”.
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Fig. 5. Top-left: self-organizing map of the performance ,,finger prints” (containing
23 measures) for all N=14 821 10-day time windows; bottom-right: locations of error clusters
on this SOM (see Sect. 5.4); all other plots show the median of the performance measure
values attributed to each cell of the SOM, white cells indicate no error, increasing saturation
of grey (for single sided performance measures), and blue and red (for double sided perfor-
mance measures) indicate increasing deviation from optimal performance (see Sect. 5.3 for
more details).
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Fig. 6. Validity index for the identification of the optimal cluster number for c-means clustering
(Weisseritz case study).
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Fig. 7: Matrix of box plots comparing the normalized error measure valuesvj attributed to the
cells in each the performance measure clusters (see Sect. 2.3). The yellowline indicates the
"perfect fit" for each of the performance measures.
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Fig. 7. Matrix of box plots comparing the normalized error measure values vj attributed to the
cells in each of the performance measure clusters (see Sect. 2.3 and 2.4). The yellow line
indicates the “perfect fit” for each of the performance measures.
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Fig. 8. Simulated and observed discharge series. The colour bars indicate the error class
during this time period.
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